Warning: Undefined array key "HTTP_ACCEPT_LANGUAGE" in C:\Apache24\htdocs\search\index.php on line 12

Deprecated: substr(): Passing null to parameter #1 ($string) of type string is deprecated in C:\Apache24\htdocs\search\index.php on line 12
TANIUCHI YASUSHI|Shinshu University Researcher List

TANIUCHI YASUSHI

Academic Assembly School of Science and Technology Institute of Science

Professor 

Researcher Information

Field Of Study

  • Partial Differential Equations

Educational Background

  • 1995, Nagoya University, Graduate School, Division of Engineering
  • 1993, Nagoya University, Faculty of Science
  • 1998, Nagoya University, 多元数理科学研究科
Research activity information

Paper

  • On uniqueness of mild $L^{3,\infty}$-solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
    Yasushi TANIUCHI
    Mathematische Annalen, 2023, Refereed
    Lead, Last, Corresponding
  • A remark on the uniqueness of Kozono-Nakao's mild $L^3$-solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
    Taniuchi, Yasushi
    Partial Differ. Equ. Appl., (68), 2021, Refereed
    Lead, Corresponding
  • Brezis-Gallouet-Wainger type inequality and its application to the Navier-Stokes equations
    NAKAO, K; TANIUCHI, Y
    Contemp. Math., 710, 211-222, 2018, Refereed
  • An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations
    Nakao, K and Taniuchi, Y
    Nonlinear Analysis, 176, 48-55, 2018, Refereed
    Lead
  • Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains
    NAKAO, K; TANIUCHI, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 3(359), 951-973, 2018, Refereed
  • Uniqueness of solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
    Reinhard FARWIG, Tomoyuki NAKATSUKA, Yasushi TANIUCHI
    Comm.Partial Differential Equations, 40(10), 1884-1904, 2015
  • Existence of solutions on the whole time axis to the Navier-Stokes equations with precompact range in L^3
    Reinhard FARWIG, Tomoyuki NAKATSUKA, Yasushi TANIUCHI
    Archiv der Mathematik, 104(6), 539–550, 2015
  • Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations inunbounded domains
    Farwig, R; Taniuchi, Y
    Discrete and Continuous Dynamical System Ser.S, 6(5), 1215-1224, 2013
  • Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations inunbounded domains
    Farwig, R; Taniuchi, Y
    J. Evolution Equations, (11), 485-508, 2011
  • On the two-dimensional Euler equations with spatially almost periodic initial data
    Taniuchi, Y; Tashiro, T; Yoneda, T
    J. Mat. Fluid Mech., 4(12), 594-612, 2010
  • On the enegy equality of Navier-Stokes equations in general unbounded domains
    Farwig, R; Taniuchi, Y
    Arch. Math., 5(95), 447-456, 2010
  • On the uniqueness of time-periodic solutions to the Navier-Stokes equations inunbounded domains
    Taniuchi, Y
    Mathematische Zeitschrift, 261(3), 597-615, 2009
  • On heat convection equations in a half space withnon-decaying data and Stokes semigroup on Besovspaces based on L^{\infty}
    Taniuchi, Y
    J. Differential Equations, 246(7), 2601-2645, 2009
  • A remark on L^{\infty} solutions to the 2-D Navier-Stokes equations
    Sawada, O; Taniuchi, Y
    J. Math. Fluid Mech., 9, 533-542, 2007
  • Remarks of global solvability of 2-D Boussinesq equations with non-decaying initial data
    Taniuchi, Y
    Fankcialaj Ekvacioj, 49, 39-57, 2006
  • On Boussinesq flow with nondecaying initial data
    Sawada, O; Taniuchi, Y
    Fankcialaj Ekvacioj, 47, 225-250, 2004
  • Uniformly local L-p estimate for 2-D vorticity equation and its application to Euler equations with initial vorticity in bmo
    Taniuchi, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 248(1), 169-186, 2004WebofScience
  • The limiting uniqueness criterion by vorticity for Navier-Stokes equations in Besov spaces
    Ogawa, T; Taniuchi, Y
    TOHOKU MATHEMATICAL JOURNAL, 56(1), 65-77, 2004WebofScience
  • Navier-Stokes equations in the Besov space near L^{\infty} and $BMO$
    Kozono, H; Ogawa, T; Taniuchi, Y
    Kyushu Journal of Math., 57, 303-324, 2003
  • A note on blow-up criterion to the 3-D Euler equations in a bounded domain
    Ogawa, T; Taniuchi, Y
    J. Math. Fluid Mech., 5, 17-23, 2003
  • On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain
    Ogawa, T; Taniuchi, Y
    J. Differential Equations, 190(1), 39-63, 2003WebofScience
  • The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations
    Kozono, H; Ogawa, T; Taniuchi, Y
    Mathematische Zeitschrift, 242(2), 251-278, 2002WebofScience
  • A note on the Blow-up criterion criterion for the Inviscid 2-D Boussinesq Equations
    Taniuchi, Y
    Lecture Note in Pure and Appl. Math. 223 Theory and Numerical Math., 131-140, 2001
  • Bilinear estimates in BMO and the Navier-Stokes equations
    Kozono, H; Taniuchi, Y
    Mathematische Zeitschrift, 235, 175-194, 2000
  • Limiting case of the Sobolev inequality in BMO, with application to the Euler equations
    Kozono, H; Taniuchi, Y
    Commun. Math. Phys., 214, 191-200, 2000
  • Remarks on uniqueness and blow-up criterion to the Euler equations in the generalized Besov spaces
    Ogawa, T; Taniuchi, Y
    J. Korean Math. Soc., 37, 1007-1019, 2000
  • On stability of periodic solutions of the Navier-Stokes equations in unbounded domains
    Taniuchi, Y
    Hokkaido Mathematical Journal, 28, 147-173, 1999
  • On generalized energy equality of the Navier-Stokes equations
    Taniuchi, Y
    Manuscripta Mathematica, 94, 365-384, 1997

Research Themes

  • 非線形偏微分方程式の関数解析学的研究(特にNavier-Stokes方程式の解の適切性に関する研究)