TANIUCHI YASUSHI
Academic Assembly School of Science and Technology Institute of Science
Professor
Researcher Information
Research activity information
Paper
- On uniqueness of mild $L^{3,\infty}$-solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
Yasushi TANIUCHI
Mathematische Annalen, 2023, Refereed
Lead, Last, Corresponding - A remark on the uniqueness of Kozono-Nakao's mild $L^3$-solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
Taniuchi, Yasushi
Partial Differ. Equ. Appl., (68), 2021, Refereed
Lead, Corresponding - Brezis-Gallouet-Wainger type inequality and its application to the Navier-Stokes equations
NAKAO, K; TANIUCHI, Y
Contemp. Math., 710, 211-222, 2018, Refereed - An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations
Nakao, K and Taniuchi, Y
Nonlinear Analysis, 176, 48-55, 2018, Refereed
Lead - Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains
NAKAO, K; TANIUCHI, Y
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 3(359), 951-973, 2018, Refereed - Uniqueness of solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
Reinhard FARWIG, Tomoyuki NAKATSUKA, Yasushi TANIUCHI
Comm.Partial Differential Equations, 40(10), 1884-1904, 2015 - Existence of solutions on the whole time axis to the Navier-Stokes equations with precompact range in L^3
Reinhard FARWIG, Tomoyuki NAKATSUKA, Yasushi TANIUCHI
Archiv der Mathematik, 104(6), 539–550, 2015 - Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations inunbounded domains
Farwig, R; Taniuchi, Y
Discrete and Continuous Dynamical System Ser.S, 6(5), 1215-1224, 2013 - Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations inunbounded domains
Farwig, R; Taniuchi, Y
J. Evolution Equations, (11), 485-508, 2011 - On the two-dimensional Euler equations with spatially almost periodic initial data
Taniuchi, Y; Tashiro, T; Yoneda, T
J. Mat. Fluid Mech., 4(12), 594-612, 2010 - On the enegy equality of Navier-Stokes equations in general unbounded domains
Farwig, R; Taniuchi, Y
Arch. Math., 5(95), 447-456, 2010 - On the uniqueness of time-periodic solutions to the Navier-Stokes equations inunbounded domains
Taniuchi, Y
Mathematische Zeitschrift, 261(3), 597-615, 2009 - On heat convection equations in a half space withnon-decaying data and Stokes semigroup on Besovspaces based on L^{\infty}
Taniuchi, Y
J. Differential Equations, 246(7), 2601-2645, 2009 - A remark on L^{\infty} solutions to the 2-D Navier-Stokes equations
Sawada, O; Taniuchi, Y
J. Math. Fluid Mech., 9, 533-542, 2007 - Remarks of global solvability of 2-D Boussinesq equations with non-decaying initial data
Taniuchi, Y
Fankcialaj Ekvacioj, 49, 39-57, 2006 - On Boussinesq flow with nondecaying initial data
Sawada, O; Taniuchi, Y
Fankcialaj Ekvacioj, 47, 225-250, 2004 - Navier-Stokes equations in the Besov space near L^{\infty} and $BMO$
Kozono, H; Ogawa, T; Taniuchi, Y
Kyushu Journal of Math., 57, 303-324, 2003 - A note on blow-up criterion to the 3-D Euler equations in a bounded domain
Ogawa, T; Taniuchi, Y
J. Math. Fluid Mech., 5, 17-23, 2003 - A note on the Blow-up criterion criterion for the Inviscid 2-D Boussinesq Equations
Taniuchi, Y
Lecture Note in Pure and Appl. Math. 223 Theory and Numerical Math., 131-140, 2001 - Bilinear estimates in BMO and the Navier-Stokes equations
Kozono, H; Taniuchi, Y
Mathematische Zeitschrift, 235, 175-194, 2000 - Limiting case of the Sobolev inequality in BMO, with application to the Euler equations
Kozono, H; Taniuchi, Y
Commun. Math. Phys., 214, 191-200, 2000 - Remarks on uniqueness and blow-up criterion to the Euler equations in the generalized Besov spaces
Ogawa, T; Taniuchi, Y
J. Korean Math. Soc., 37, 1007-1019, 2000 - On stability of periodic solutions of the Navier-Stokes equations in unbounded domains
Taniuchi, Y
Hokkaido Mathematical Journal, 28, 147-173, 1999 - On generalized energy equality of the Navier-Stokes equations
Taniuchi, Y
Manuscripta Mathematica, 94, 365-384, 1997