Warning: Undefined array key "HTTP_ACCEPT_LANGUAGE" in C:\Apache24\htdocs\search\index.php on line 12

Deprecated: substr(): Passing null to parameter #1 ($string) of type string is deprecated in C:\Apache24\htdocs\search\index.php on line 12
TANIUCHI YASUSHI|Shinshu University Researcher List

TANIUCHI YASUSHI

Academic Assembly School of Science and Technology Institute of Science

Faculty of Science Department of Mathematics Course of Mathematical Sciences 

Professor 

Researcher Information

Field Of Study

  • Mathematical analysis, Partial Differential Equations

Educational Background

  • 1995, Nagoya University, Graduate School, Division of Engineering
  • 1993, Nagoya University, Faculty of Science
  • 1998, Nagoya University, 多元数理科学研究科
Research activity information

Paper

  • On uniqueness of mild $L^{3,\infty}$-solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
    Yasushi TANIUCHI
    Mathematische Annalen, 2023, Refereed
    Lead, Last, Corresponding
  • A remark on the uniqueness of Kozono-Nakao's mild $L^3$-solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
    Taniuchi, Yasushi
    Partial Differ. Equ. Appl., (68), 2021, Refereed
    Lead, Corresponding
  • Brezis-Gallouet-Wainger type inequality and its application to the Navier-Stokes equations
    NAKAO, K; TANIUCHI, Y
    Contemp. Math., 710, 211-222, 2018, Refereed
  • An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations
    Nakao, K and Taniuchi, Y
    Nonlinear Analysis, 176, 48-55, 2018, Refereed
    Lead
  • Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains
    NAKAO, K; TANIUCHI, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 3(359), 951-973, 2018, Refereed
  • Uniqueness of solutions on the whole time axis to the Navier-Stokes equations in unbounded domains
    Reinhard FARWIG, Tomoyuki NAKATSUKA, Yasushi TANIUCHI
    Comm.Partial Differential Equations, 40(10), 1884-1904, 2015
  • Existence of solutions on the whole time axis to the Navier-Stokes equations with precompact range in L^3
    Reinhard FARWIG, Tomoyuki NAKATSUKA, Yasushi TANIUCHI
    Archiv der Mathematik, 104(6), 539–550, 2015
  • Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations inunbounded domains
    Farwig, R; Taniuchi, Y
    Discrete and Continuous Dynamical System Ser.S, 6(5), 1215-1224, 2013
  • Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations inunbounded domains
    Farwig, R; Taniuchi, Y
    J. Evolution Equations, (11), 485-508, 2011
  • On the two-dimensional Euler equations with spatially almost periodic initial data
    Taniuchi, Y; Tashiro, T; Yoneda, T
    J. Mat. Fluid Mech., 4(12), 594-612, 2010
  • On the enegy equality of Navier-Stokes equations in general unbounded domains
    Farwig, R; Taniuchi, Y
    Arch. Math., 5(95), 447-456, 2010
  • On the uniqueness of time-periodic solutions to the Navier-Stokes equations inunbounded domains
    Taniuchi, Y
    Mathematische Zeitschrift, 261(3), 597-615, 2009
  • On heat convection equations in a half space withnon-decaying data and Stokes semigroup on Besovspaces based on L^{\infty}
    Taniuchi, Y
    J. Differential Equations, 246(7), 2601-2645, 2009
  • A remark on L^{\infty} solutions to the 2-D Navier-Stokes equations
    Sawada, O; Taniuchi, Y
    J. Math. Fluid Mech., 9, 533-542, 2007
  • Remarks of global solvability of 2-D Boussinesq equations with non-decaying initial data
    Taniuchi, Y
    Fankcialaj Ekvacioj, 49, 39-57, 2006
  • On Boussinesq flow with nondecaying initial data
    Sawada, O; Taniuchi, Y
    Fankcialaj Ekvacioj, 47, 225-250, 2004
  • Uniformly local L-p estimate for 2-D vorticity equation and its application to Euler equations with initial vorticity in bmo
    Taniuchi, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 248(1), 169-186, 2004WebofScience
  • The limiting uniqueness criterion by vorticity for Navier-Stokes equations in Besov spaces
    Ogawa, T; Taniuchi, Y
    TOHOKU MATHEMATICAL JOURNAL, 56(1), 65-77, 2004WebofScience
  • Navier-Stokes equations in the Besov space near L^{\infty} and $BMO$
    Kozono, H; Ogawa, T; Taniuchi, Y
    Kyushu Journal of Math., 57, 303-324, 2003
  • A note on blow-up criterion to the 3-D Euler equations in a bounded domain
    Ogawa, T; Taniuchi, Y
    J. Math. Fluid Mech., 5, 17-23, 2003
  • On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain
    Ogawa, T; Taniuchi, Y
    J. Differential Equations, 190(1), 39-63, 2003WebofScience
  • The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations
    Kozono, H; Ogawa, T; Taniuchi, Y
    Mathematische Zeitschrift, 242(2), 251-278, 2002WebofScience
  • A note on the Blow-up criterion criterion for the Inviscid 2-D Boussinesq Equations
    Taniuchi, Y
    Lecture Note in Pure and Appl. Math. 223 Theory and Numerical Math., 131-140, 2001
  • Bilinear estimates in BMO and the Navier-Stokes equations
    Kozono, H; Taniuchi, Y
    Mathematische Zeitschrift, 235, 175-194, 2000
  • Limiting case of the Sobolev inequality in BMO, with application to the Euler equations
    Kozono, H; Taniuchi, Y
    Commun. Math. Phys., 214, 191-200, 2000
  • Remarks on uniqueness and blow-up criterion to the Euler equations in the generalized Besov spaces
    Ogawa, T; Taniuchi, Y
    J. Korean Math. Soc., 37, 1007-1019, 2000
  • On stability of periodic solutions of the Navier-Stokes equations in unbounded domains
    Taniuchi, Y
    Hokkaido Mathematical Journal, 28, 147-173, 1999
  • On generalized energy equality of the Navier-Stokes equations
    Taniuchi, Y
    Manuscripta Mathematica, 94, 365-384, 1997

Research Themes

  • 非線形偏微分方程式の関数解析学的研究(特にNavier-Stokes方程式の解の適切性に関する研究)